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ABSTRACT

Debugging is a cornerstone of programming and has been shown to
be especially problematic for beginners. While there has been some
work trying to understand the difficulties that beginners face with
debugging, investigating common mistakes or specific error types
they struggle with, there is little work that focuses on in-depth
analysis of how novice programmers approach debugging, and how
it changes over time. In this paper, we present MAADS (Mixed-
Methods Approach for the Analysis of Debugging Sequences), a
scalable and generalizable approach that combines quantitative and
qualitative methods by using a state/action representation and visu-
alization to gain knowledge about the debugging process through
a step by step analysis. To demonstrate the utility of MAADS, we
analyzed the debugging processes of middle school students who
developed code within May’s Journey, a game designed to teach
basic programming principles. The approach showed great utility
in identifying differences in students’ debugging techniques and
learning paths.
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1 INTRODUCTION

Teaching programming is a difficult task that has received increased
attention from researchers over the past few decades [10, 25, 30].
An important aspect of learning how to program is debugging, the
process of finding and resolving errors within the code. Debug-
ging is difficult, and has been identified as one of the biggest chal-
lenges that beginner programmers face [17, 18, 24]. Begum et al. [4]
enumerated knowledge requirements for successful debugging as:
knowledge of the intended and actual program, understanding of
the language, general programming expertise, and knowledge of
bugs, debugging methods, and the application domain.

Existing literature [1, 2, 5, 14, 16, 20, 29] has identified patterns
and developed high level frameworks that explain general strate-
gic elements of debugging. While details vary, these frameworks
follow a similar structure of steps where a programmer would
first understand the system enough to recognize that something
is wrong [5, 14] and/or develop an initial hypothesis regarding an
error [2, 5, 14]. They would then follow various steps of testing the
hypothesis until the error is resolved, or looping back to previous
steps if the error is not resolved [2, 14].

Learning how to debug is important as it’s an effective way to
improve general problem-solving skills [19] and can better assist
in learning [5]. Therefore, investigating the debugging process in
detail is important since it not only sheds light on what makes pro-
gramming difficult for introductory students, but also assists in the
development of systems for improving problem-solving techniques
and lowering steep learning curves [11]. However, such in-depth
investigation into the debugging process can be challenging and
studies that tackled this problem are either (a) qualitative [8, 9, 33],
which can be critiqued as being time consuming and lacking scala-
bility or generalizability, (b) language construct specific [15, 31, 32]
and hence constrained and difficult to generalize, or (c) purely
quantitative and predictive rather than exploratory, often focus-
ing on prediction of student success/failure, and not on providing
interpretable models of the process itself [27, 28].

In this paper, we propose MAADS, a methodology that allows
us to investigate debugging as a process and produce interpretable
models using data-driven techniques and visualizations. MAADS
enables us to examine students’ progress within each problem,
clearly showing how they tackle debugging and how their errors
evolve over time. To visualize students’ paths, we used a state/ac-
tion representation where a state is the error types present in a
submission and the action is the change made to the code between
submissions. This approach provides a deeper, more contextually
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informed analysis of learning trajectories, similar to what a quali-
tative study would do, but at a scale that can allow inferences on
debugging processes of groups of students’ behaviors and not just
one student at a time.

2 RELATED WORK

While research on programming education is abundant, there is
little work looking at the debugging process through investigation
of student trajectories or strategies, which is our focus. Spohrer and
Soloway [33] analyzed students’ bugs when they compiled their
programs (i.e., after they resolved all syntax errors). However, they
only looked at final submissions and did not observe the progression
or analyze intermediate code. Webb [35] investigated debugging
strategies with students working in groups; they recorded student
interactions with one another and all interactions within the com-
puter. They then categorized debugging strategies based on: level
of abstraction, size of the program unit, and whether the strategy
was in response to a suggestion by an instructor. They found that
students showed very little planning, displaying an opportunistic
style of debugging. While these approaches are informative, they
are time consuming and difficult to recreate at a large scale.

In addition to manual inspection of strategies, several researchers
used machine learning techniques to shed light on the debugging
process. For example, Piech et al. [28] modeled the paths that stu-
dents take in debugging using Hidden Markov Models and then
clustered them to understand how students varied in the devel-
opment of pathways for programming assignments, including the
type of states students visited and transitions between them. Simi-
lar to our approach, they were able to look at the clusters in terms
of states and actions taken by the students. While very promising,
their approach, being unsupervised, is difficult to interpret. It is, for
example, difficult to make sense of the underlying misconceptions
behind the different states exhibited in the HMM model. For in-
stance, they defined a “sink” state where students tend to get stuck,
but it is not clear why students got stuck in terms of the types of
error exhibited, or how the student was approaching debugging.
The group also used Recurrent Neural Networks (RNN) to model
students’ learning [27], in order to predict students’ performance in
future problems. However, they were primarily focused on cluster-
ing of latent topics, using datasets from the ASSISTments tutoring
system and Khan Academy, and did not provide an in-depth analy-
sis of students’ learning processes over time. Blikstein [6] analyzed
code snapshots from several students and found various strategies,
highlighting ones that differentiate between novice and expert pro-
grammers. To automate the analyses, he focused on the number of
characters and the actions of adding, moving and modifying lines
of code as well as the differences in size and frequency between the
code snapshots. While there was no significant correlation between
the size of code updates (i.e., writing larger or smaller codes at a
time) and grades, the amount of change in student’s programming
patterns over time was significantly correlated with course per-
formance [7]. In contrast, our current study evaluates each code
submission according to the different types of errors present and
the amount of code that was changed each time. Our methodology
requires human intervention to identify error types, while the rest
of the process is fully automated for fast and scalable analysis.

3 PROGRAMMING ENVIRONMENT

In this paper, we use May’s Journey, a 3D puzzle game that teaches
the basics of programming by having learners type simple instruc-
tions in the game’s custom programming language to interact with
objects, solve puzzles, and navigate an environmental maze [12, 13].
This game was chosen because (1) it introduces programming in a
very simple and gradual way allowing us to investigate beginners’
learning processes, and (2) the game can log all interaction data,
giving us a clear record of what each student did at each time step.
However, our methodology can be applied to any programming
language or environment that provides appropriate logging.

This is the “main function”.
The main function runsyour | |4

e 0

Figure 1: Coding interface: (1) Structure of the command
with examples, (2) Error messages, (3) Text area and buttons
to run/restart/help, (4) Programmable objects and execution.

3.1 Learning goals

The game introduces Object Oriented Programming (OOP) using a
custom programming language. Through observation and explo-
ration, the player is introduced to objects that can be manipulated
within the environment. The game language conforms with OOP
conventions, while reducing the verbosity to lower the barrier of
syntax.

Players solve puzzles and progress to subsequent levels through
coding. While exploring the game world, they will find that their
paths are blocked, and that they can only clear the obstacles by
pulling up a coding interface, as shown in figure 1, to type in their
own code. The interface includes further relevant information, such
as commands available in that level and how to use them. Objects
that can be manipulated by the code have their names displayed
along with indications of how they can be interacted with (moving
or rotating). For example, in the first level, players have to move
the block1 down by writing block1.MoveDown() ; inside the main
function. The main function is provided at the beginning of each
level and is reset (with its contents cleared) if the player restarts.

3.2 Debugging

The game features an error handling mechanism that provides
comprehensive feedback, introducing learners to the debugging
process. Error messages are designed to be clear, concise, and helpful
without giving away solutions. A player can make two types of
errors: code-related and puzzle-related. code-related errors, such



as “Missing opening curly bracket { for the for loop in line 5, are
displayed in the console. We further differentiate between these
errors in later sections. puzzle-related errors are presented in the
game in the form of a sound cue and a reset of the puzzle to its
initial layout.

In order to progress through the game, players have to identify
errors, make the appropriate code changes to correct them, and
re-run the code until they solve the puzzle. These steps align with
what they would have to do in other programming environments.

3.3 Topics & Instruction

The work discussed here uses the first 10 levels of the game, cov-
ering basic instructions, sequence logic, and loops. Basic instruc-
tions are introduced using two methods: object.MoveDirection();
where Direction can be Left, Right, Up, and Down, and object. Ro-
tate("direction"); where, in this case, the direction is a String argu-
ment, introducing functions with arguments as well as a new type.
Sequence logic is introduced through puzzles where the player must
input commands in the correct order to progress and win the level.
Finally, a simplified for loop is presented. The structure takes two
Integers as the beginning and end and then repeats the commands
inside the loop the designated number of times. An example code
in this custom programming language is as follows:

main() {
for (@ to 5) {
block1.MovelLeft();
block2.Rotate("right");

4 PARTICIPANTS & DATA

In order to demonstrate the utility of this methodology, and investi-
gate the debugging processes of novice programmers, we conducted
a study with participants in 6th, 7th and 8th grade from 2 different
public schools. They were presented with the game during normal
class time from their instructor alone or accompanied by one or two
researchers. When present, researchers observed students as they
played and took notes of struggle points. Further, researchers noted
levels in which players spent a lot of time, the most common errors
they faced, and how they overcame each error and who helped
them. Students played during class time and were able to play more
during their free time. We collected 9452 code submissions related
to 10 levels and generated by 185 different profiles. The actual num-
ber of participants is not known, since a player can create multiple
profiles with different user-names.

5 METHODOLOGY

The rationale behind MAADS is to leverage qualitative analytical
power that allows us to observe debugging sequences and capture
the patterns and individual differences in a scalable and general-
izable way. The approach requires a 4-step process, where in Step
1: the error types present in the data set are identified, in step
2: All errors in each code submission are automatically extracted
and tagged with the appropriate type from step 1, in Step 3: the
submissions are converted into a state-action transition, where a

state is the labeled errors from Step 2 and actions are related to
what type of change had been made to the code to reach that state,
and lastly in step 4: the state/action transition is visualized as a
sequence. Using the visualized sequences, a researcher can then
inspect students’ debugging approaches and progression to identify
patterns and build models of the debugging process.

5.1 Error Types

To classify the errors, we needed to first identify them. We collected
all error messages possible in the levels studied and noticed that
while some of the in-game error messages are very precise, to
help the player debug, they can be too specific for a classifier or a
clustering algorithm (e.g., “The begin and end arguments of the for
loop should be integers. an integer is a whole number. Examples:
-4, 0, 2, 10... 7). At the same time, some error messages are too
broad (e.g. “X doesn’t match the commands and objects available”),
which makes it difficult to understand if it’s a purely syntax error
or another type of misunderstanding.

To enable the right abstraction level for analysis, we identified
4 major error types that the players make: Structure, Syntax, Rea-
soning, and Puzzle. These categories also align with the work of
Katz and Anderson [14], where they identified five error types that
programmers make: Goal, Misrepresentation, Intrusion, Miscon-
ceptions, and Syntactic. Our error types are defined as follows:

Puzzle Errors: Players’ code runs (no compiler errors) but does
not solve the puzzle. It is somehow similar to Goal errors which are
defined as missing code, but in this case, it can also be extra code
or code that does something different from what is intended.

Structure errors: These refer to problems with the structure of
the code. For example, when players put code outside of the main
function, or don’t have a main function at all. Another example is
calling a function without an object. We differentiate these errors
from syntax errors such as forgetting a curly bracket or a semicolon.
This is also similar to Katz and Anderson’s Misconception errors.

Reasoning errors: These include both Misrepresentation and
Intrusion errors. For example, players use a valid function but apply
it to the wrong object, such as rotating an object that can only be
moved. Another example is trying to use code that worked in a
previous level in the current level without making the necessary
changes. For example, moving block2 which existed in a previous
level but does not exist in the current one.

Syntax errors: These are purely syntax errors such as upper-
lower case, missing semicolon, etc.

Undefined errors: These are errors that could not be catego-
rized by the parser.

5.2 Error Types Extraction

Table 1 shows how submissions have been automatically labeled by
our parser. Some errors can have one of two types depending on the
specific case. For example, object does not exist and command does
not exist could be due to a simple syntax error, like a typo or it could
be due to a reasoning error, such as using objects from previous
levels or from examples. In this case, we check the name they typed
against previously used object names to differentiate the two cases.
For example, the error “block2 doesn’t match the commands and
objects available” and block2 is in the examples given to the player



or used in a previous level, is different from the error “blocck2
doesn’t match the commands and objects available” where it is
a typo. The same process is applied to the wrong argument by
checking if they made a syntax error “block1.Rotate("leftt");)” or a
reasoning error by putting the wrong type such as an int instead of
a string “block1.Rotate(2);)”.

5.3 State/Action Representation

Looking more closely at the code submissions, it becomes clear
that the number of errors in a single submission varies a lot. The
game parser will read the code submitted and throws the first error
it encounters without considering the rest of the code. One code
submission could have a wrong object, a missing semi-colon, and
a missing curly bracket and the parser would only catch one of
those. Therefore, we post-processed each code submission, with an
augmented parser that identifies all errors within each submission
as seen in table 1. Then, each submission is represented as a state
S = (x,y, z, w) where x, y, z, w symbolize the number of errors for,
respectively: structure, reasoning, puzzle, and syntax. For instance,
Si =(0,2,0,1) means the submission i has two reasoning errors
and one syntax error. Note that we have excluded undefined errors
since they don’t bring any insights into the issue encountered.

While the augmented parser works in most cases, there are
still certain instances (7.9% of submissions) in which it mislabels
data. These generally lead to a wrong error message followed by
unidentified errors. These are common compiler misinterpretations
that exist in various other programming languages [34]. Making
compiler error messages more comprehensible and less misleading
is still an ongoing research problem [3, 26].

While the state represents the errors in a code submission, the
action shows how the player transitioned between those states.
Table 2 describes the different actions that make up each player’s
action sequence, and how they are derived from the change made
between code submissions. Similar to the work of Blikstein [7], play-
ers can either add, remove, or change previous code. However, in
our case, we do not look at averages or absolute values, but instead
abstract the amount of change to be relative to the previous code.
In fact, in the different puzzles studied, the length of the solution is
usually small. it also varies between levels which makes absolute
values of length not accurate in this case. Therefore, the difference
between small, medium, or large changes is relative to the previous
submission’s code length as explained in Table 2. Additionally, for
add and change, we check if the added code exists in the previous
submission and if so, the action is extended with "added existing
code". For example, "added medium chunk of code/added existing
code" is a possible action.

5.4 Sequences & Visualization

With these states and actions, for each level and each player, a
sequence is made from the start of the level to the correct answer or
until the player quit. To visualize the process, we adopt the work on
visual representation introduced in [21]. This visualization allows
an easy understanding and investigation of player behavior [22, 23].
Glyph, shown in Figure 2, is composed of two visual representations:
a state graph (right) and a sequence graph (left). The State graph is
the node-link diagram of the game states and actions of the students.

Code Submission Labeled Errors Type

main(){ wrong argument syntax
block1.Rotate(left);} object does not exist | reasoning
for(0 to 4) case error syntax
{stonel.MoveRight(); missing main structure

Stonel.MoveRight();}
Table 1: Code submissions labeled and classified by the aug-
mented parser that recognizes multiple errors per submis-
sion.

Action Description

did not make any code change between
the last two states

(added/removed/ the length of the code (added/re-
changed)  small | moved/changed) represents less than
chunk of code 15% of the previous code’s length
(added/removed/ the length of the code (added/re-
changed) medium | moved/changed) is between 15% and
chunk of code 50% of the previous code’s length
(added/removed/ the length of the code (added/re-
changed) large | moved/changed) represents more than
chunk of code 50% of the previous code’s length

no changes

Table 2: Actions that represent the modification to the code
made by a player between two states.

The size of the states and the thickness of the links vary with the
number of players visiting the states and the links, respectively.
The Sequence graph displays nodes that represent the sequence
patterns exhibited by users. Each node represents a full sequence
and the distance between the nodes represents how similar the
sequence patterns are. Closer nodes are more similar.

6 RESULTS

In this section, we present the patterns we identified through the
use of the visualized sequences. We first discuss common patterns
in sequences, showing the utility of the approach in identifying
general trends in a large dataset. We then examine individual differ-
ences in the paths of players with multiple code submissions. With
aggregate data alone, these players would be considered the same.
However, from their progression, we can identify the differences
between them, demonstrating that the number of errors alone does
not always inform about a player’s performance.

6.1 Patterns & Common Sequences

In Figure 2, we can observe the various sequences in level _1_3, with
the three most frequent highlighted. This level has 134 players, 21
state nodes and 85 different paths. For each path, we can observe
the list of states and actions leading to them. Glyph allows us to
quickly identify and differentiate between players who made no
mistakes, those who made a few mistakes, but were efficient at
solving them, and those who struggled to debug their code. Most
players (15.3%) encountered no errors in this level, followed by
(10.6%) who encountered only a single puzzle error and were able to
quickly debug the mistake in order to reach the level solution. This
can be observed in Figure 2. An examination of the action sequence
that corresponds with the sequence containing the error reveals
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Figure 2: Highlighted are the 3 most frequent sequences. In
pink, the most frequent sequence with no errors. In blue, the
second and third most frequent sequences with 1 or more
visits to a state with a puzzle error.

33

Figure 3: An example of a player who struggled to debug
their errors and ultimately quit the game. Their sequence
is characterized by numerous loops between the same state
as well as looping between various error states.

that these“higher performin” players fixed this error by adding
a medium chunk that was syntactically similar to the code that
already existed, a systematic way of debugging based on smaller,
targeted changes and knowledge of code that is known to work.

The players who struggled to debug their code efficiently were
identified by their sequence node being farther from the most com-
mon patterns. Their sequences were characterized by loops, both
between different error states and a single state. These indicate
subsequent visits to the same error state as well as a tendency to
reintroduce old errors while trying to fix new ones. An example
of this can be seen in Figure 3. Note that while two states that are
similar in our representation may not be the exact same code, we
argue that they still carry the same information as to what type
of error the player is struggling with. An examination of the se-
quences of players such as the one seen in Figure 3 reveals that
many players who displayed similar state visualizations tended
to perform large code changes between submissions, rather than
medium or small ones. Similarly, such players also resubmitted
incorrect code with no changes at much higher frequencies than
their "high performing" counterparts.

6.2 Individual Differences in Player Sequences

Aside from looking at the sequences as a whole, examining the data
in this sequential manner allows us to make observations about

how the students’ debugging strategies changed as they worked on
a given puzzle. We look at the state graphs and sequences of three
players (seen in Figure 4) who completed the first level, in order to
compare their processes.

In the Glyph visualization, we can easily see that player (A) had
a clear linear progression from start to finish. By taking a closer
look at their sequences, we can see that, though they started with
two syntax errors, they only ever made small changes to their code
and that they progressed from two errors, to one error, to error-free
code. We can hypothesize that this player had a highly efficient de-
bugging strategy that focused on small, localized changes targeting
a single error at a time. As discussed previously, such a strategy
was common among higher performing debuggers. Another ob-
servation about player (A), is that they never submitted code with
no changes, a behavior that was performed by most players in the
data-set. This may be the result of the player being at a high level
of understanding in terms of how their code affected the environ-
ment/interacted with the puzzle, the simplicity of the puzzle in the
given level, or a combination of the two.

A very different story is told by the graph of player (B). Unlike
player (A), player (B) visits a larger number of error states. Their
graph contains frequent looping between and within error states,
and there is less of a sequential, linear path from the beginning
to the solution. This indicates that player (B) struggled to debug
their code, frequently resubmitting code with the same error, or
introducing new errors while trying to correct older ones. Looking
at player (B)’s sequence, we can see that they frequently made
medium sized code changes, and had very few small changes, indi-
cating that their code edits were less targeted, perhaps because they
were less certain of where the error was than player (A). However,
they never make large code changes, and do progress into a brief
series of smaller code changes towards the end of their sequence.
Additionally, while they do resubmit code without changes, they
do not do so an exhaustive number of times. These resubmits likely
represent a strategy of observation in which the code is run multi-
ple times to confirm the output is consistent. The fact that these
appear between almost every other state in the sequence indicate a
possible strategy of trial and error, and it is noteworthy that they
become less frequent towards the end of the sequence, implying
that the need for such confirmatory tests may have diminished.
This, combined with the smaller code changes towards the end of
the sequence, indicate that the player’s trial and error approach did
eventually allow them to identify their error, debug their code, and
solve the puzzle.

Finally, the graph of player (C) is an interesting one that sits
somewhere between the previous two in terms of general shape
and complexity. We can see a sequence that hits an error state,
goes on to hit two others, then loops back to that initial error state
before reaching the solution, indicating that they may have made
code edits that did not move them closer to any answer. In addition,
unlike the previous two examples, there are loops within each error
state, indicating that the player made numerous subsequent code
submissions with the same error. This graph implies that the player
struggled to a great degree to debug their code. An examination of
their sequence supports this theory, as we see a sequence with a
large number of subsequent no-change submissions (between 9 and
20) between predominantly large and medium sized code changes.
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Figure 4: Graphs and Sequences from the first level of players who (A) were a quick and efficient debugger, (B) struggled
but found their way through continuous adjustment, and (C) struggled to progress in a sequential manner towards a correct

solution.

Additionally, the frequency of no-change submissions does not
prominently diminish towards the end of the sequence as it does
with player (B). These imply that player (C) was not employing
an exploratory, trial and error strategy, but instead may have been
resubmitting code many times out of frustration.

7 DISCUSSION

While the observations discussed in Results could be observed from
the code submissions of the students, observation, or similar quali-
tative approaches, such methods would prove time consuming and
would not scale efficiently with the number of students and lines
of code. MAADS methodology and the Glyph visualization allow
for quick identification of common and uncommon trajectories,
and grant the ability to pinpoint specific trajectories for a deeper
examination. Further, they facilitate the ability to do this in an
efficient and scalable manner. Being able to observe the trajectories
of student debugging in this way provides us with useful insight
into the patterns and strategies of debugging employed by novice
programmers. Additionally, it can also be used to determine ways
in which May’s Journey, and similar educational environments, can
be improved to facilitate learning. For example, the visualization
allows us to observe the quit state for each level, and from there
we can identify the different paths leading to it. This allows us to
trace the trajectories of students who quit, in order to understand
the difficulties they faced that led them to do so. Such information
can be used to better design instruction and feedback, or even en-
able an intelligent system to assist players on this path without
reducing the challenge for other players. In fact, the need for an
adaptive help system is reinforced by looking at the diverse paths

players went through. The only clustered sequences were for "high
performing” students, however for students who struggled, they
went through different states. This may be because most players
had never programmed before and had various issues and ways to
tackle the problems. We note that in our representation, we did not
take the time spent into account. This is because we observed that
players would often pause progression to seek help, provide help,
or because of unrelated distractions. As a result, time spent does
not act as an accurate indicator of performance in this case.

8 CONCLUSION AND FUTURE WORK

We presented MAADS, a novel approach to analyze debugging
paths for beginners that is systematic and automated and thus
providing a scalable method to investigate learning processes in a
deeper way. The methodology allowed us to explore the debugging
processes and identify patterns for groups of students, as well as
investigate paths taken by single students. Future work should
include a larger data set with a bigger range of possible errors. In
fact, it will be interesting to observe how patterns change when
including errors related to variables, Boolean logic, conditionals, etc.
Furthermore, there can be many ways to enrich this methodology
by including time spent debugging into the representation or more
information about how the code was written with a more granular
look between submissions. However, adding too much information
could make it harder to see patterns since the sequences would
be more specific. It is necessary to strike the right balance during
data abstraction. Finally, future work should compare the outcomes
of this methodology to qualitative analysis or machine learning
models to fully grasp advantages and disadvantages of each.
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