
Grammar Based Modular Level Generator for a Programming Puzzle Game

Chaima Jemmali
Northeastern University

jemmali.c@northeastern.edu

Carter Ithier
Northeastern University

ithier.c@northeastern.edu

Seth Cooper
Northeastern University

se.cooper@northeastern.edu

Magy Seif El-Nasr
UC Santa Cruz

mseifeln@ucsc.edu

Abstract

Procedural Content Generation is widely used in games, how-
ever, its use in educational puzzle games has been limited.
These types of games present common challenges such as
solvability and non triviality, but also the extra challenge of
preserving intended learning goals. In this paper, we present a
modular constructive approach to generate levels in a puzzle
programming game. The approach uses a grammar to gen-
erate game elements from code and works backwards from
the solution to ensure solvability, controllability over the so-
lution, and variation, allowing for alternative solutions that
preserve the learning goals.

Introduction
There has been a lot of research on Procedural Content Gen-
eration (PCG) and there are several techniques used to gen-
erate levels for different game genres. The most common
two genres where PCG is applied for level generation are
dungeons/rogue-likes and platformer games. However, the
application to puzzle games has been limited (De Kegel and
Haahr 2019). Educational Games are another area where
PCG has not been adopted widely (Dong and Barnes 2017).
Besides the common challenges of solvability and non-
triviality of the solution, these types of games present the ex-
tra challenge of preserving intended learning goals (Smith,
Butler, and Popovic 2013; Valls-Vargas, Zhu, and Ontañón
2017; Dong and Barnes 2017).

In this paper, we focus on two aspects of the gener-
ator: controllability over the educational goals and varia-
tion, meaning the designer has full control over the learn-
ing goals in the level to be generated. Further, generated
levels vary in size, layout, and number of alternative so-
lutions. In fact, we are not looking if a puzzle is merely
solvable, we require it to be solvable with the solution code
provided as input which provides greater control on what
gameplay is generated. This approach is similar to generat-
ing levels from the gameplay as a vocabulary (Van der Lin-
den, Lopes, and Bidarra 2013), where our gameplay is de-
scribed through the solution code. To guarantee solvability,

Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

we use a grammar based approach which insures by con-
struction that the level is solvable without post-processing
or filtering out unsolvable solutions (Traichioiu et al. 2015;
Valls-Vargas, Zhu, and Ontañón 2017; Font et al. 2016).
We combine this approach with working backwards from
a solved map similar to what has been done for the Sokoban
game (Taylor and Parberry 2011). Controllability and vari-
ation are somewhat in opposition, especially when having
such a hard constraint on how the level should be solved. To
provide variation, we allow fluidity in our level construction,
especially in the path creation section. This allows levels to
have alternative working equally difficult solutions, of the
same length as the provided solution code, but also intro-
duces shorter solutions which means the player can solve
the level by bypassing certain elements. We further evaluate
the generator through the design/aesthetics lens by analyz-
ing the expressive range (Smith and Whitehead 2010) using
two metrics: percentages of walkable and interactable tiles.
Our results show that the levels generated are 100% solvable
by the provided solution code. On average, 47.4% of them
had an alternative working solution of the same length, while
21.3% had shorter “easier” solutions.

The contribution of this paper is the design and applica-
tion of a PCG system combining previously used techniques,
as well as introducing new ones for path creation. The gener-
ator is applied to a programming puzzle game, but the modu-
lar aspect of the approach should make parts of it applicable
to other educational or puzzle games.

Related Work
Research on games that teach programming is significant,
especially at the introductory level (Harteveld et al. 2014;
Miljanovic and Bradbury 2018). Generating content for
these games can be challenging and time consuming, which
is increasing the need for PCG to create content that can be
tailored to specific player needs (Park et al. 2019). However,
a major concern in PCG is the lack of reliability (Togelius
et al. 2011), which makes the assessment of the generator of
utmost importance. Controllability and variability are two
of the major metrics used to assess PCG systems. In fact,
the degree of control and the set of options are very im-
portant characteristics of any procedural generator (Shaker



Figure 1: Coding interface: bottom-left: Structure of the
command with examples, bottom-right: output area shows
syntax error or progress towards solution, top-right: Text
area and buttons to run/restart/help/undo/redo, top-left: Pro-
grammable objects and animation/code execution area.

et al. 2016). When dealing with puzzle levels, solvability
is an important constraint which can be achieved through
different techniques. Some works have used generate-and-
test techniques (Dong and Barnes 2017), constructive ap-
proaches where the content is generated only once and per-
formance checks may be applied throughout (De Kegel and
Haahr 2019), search-based algorithms (Togelius and Shaker
2016), or answer set programming (ASP) (Smith and Mateas
2011), which falls somewhere in between constructive and
generate-and-test. Procedural content generation via ma-
chine learning (PCGML) (Summerville et al. 2018) is an
increasingly popular approach to generating various content,
however, it does not always guarantee solvability. In the con-
text of learning games, another constraint is to preserve the
intended learning goals or the intended difficulty of the lev-
els and ascertain there are no trivial solutions. The definition
of such solutions and the approaches to detect them vary de-
pending on the game. For instance, in an educational game
that teaches parallel programming (Valls-Vargas, Zhu, and
Ontañón 2017) a trivial puzzle is a puzzle that doesn’t re-
quire the player to make any changes to be solved and is
identified through the use of a model checker that will run
different scenarios to check if they pass or fail. In another
puzzle game that teaches programming (Dong and Barnes
2017), solutions that violate educational goals are solutions
that contain unintentional loops and unnecessary elements.
However, the work evaluates a code synthesizer that creates
a solution code from a template rather than the level gener-
ated for that code. To ensure the absence of trivial solutions,
Smith, Butler, and Popovic (2013) used a modified version
of ASP to successfully generate levels with no undesirable
solutions, however, the search space is so large that it makes
the generation time too long for online application.

In this work, we use a constructive approach to guarantee
solvability in a computationally inexpensive manner (Shaker
et al. 2016). We use a grammar to generate the appropri-
ate game elements given an input code. Then, we work
backwards from the solution similarly to Taylor and Par-
berry (2011) to ensure solvability with a specific solution

Object Type Symbol Description
movable
block

m / M /
M & PP

can be walkable or not, may
activate a pressure plate

rotating
block

rr / RR L shaped block that rotates
around its center (rr/RR),
can be walkable or not

stoppable
block

mb / MB moving block that can be
stopped

fire statue FS /
FSR &
reward

A rotatable or movable
statue that blows wind/fire
(see Figure 1)

statue S / S &
PP

statue that has the same
characteristics as an above
ground block

pressure
plate

PP & re-
ward

activates a reward (key, hid-
den door, hidden block, etc)

hidden
block

bh ground level block that can
be revealed.

revealed
block

BR above ground block that
can be hidden.

hidden door DH A door that can be revealed.
closed door DC A door that can be opened.
hidden key KH A key that can be revealed.
fire FU / FL A fire pit that can be lit or

unlit.
lever LV & re-

ward
A lever that activates a re-
ward if it’s in the correct
position.

Table 1: Description of game elements in the game; their
symbols, mechanics, and features

while allowing for variability with equally difficult codes
and minimizing trivial solutions.

Game
In this paper, we use May’s Journey, a puzzle game that
teaches the basics of programming by having learners type
simple instructions in the game’s custom programming lan-
guage to interact with objects, solve puzzles, and navigate
an environmental maze (Jemmali et al. 2019; 2018).

The game is structured in two major phases. In the first
phase, players can move the avatar around using arrow
keys, interact with different parts of the environment, talk to
NPCs, or collect objects. In the second phase, they pull up
a programming interface, as can be seen in Figure 1, where
they interact with game objects through code to solve differ-
ent puzzles, which allows them to progress through a level
or reveal some rewards.

Each level in the game offers a coding challenge that can
be maze-based, where the reward for solving it is getting
to the next level, or reward-based, where solving it yields a
physical reward (key, manuscript, secret area), or both. Each
level has an entry and at least one exit, but could have mul-
tiple. If a level has more than one exit, only one of them
can be an open door. The others have to be either hidden or
closed and revealed by solving the level. The programming
language is object oriented; it is similar to Java, but with less



heavy syntax. The affordances of the language are: simple
instructions (commands applied to objects), simplified for
loops, if statements, variables, object attributes, and while
loops. For our PCG system we considered 4 commands that
can be applied to objects: Move, Rotate, Open and Stop. For
attributes, we considered 2: isMoving (bool) and position
(Vector3 or string). Each object can have multiple attributes,
but only one type of command applied to it. For example, if
it is movable it can’t be rotated, but it could have more than
one attribute. Table 1 shows the objects in the game with a
small description of their functionality and the symbols used
to describe them in our grammar.

Figure 2: Generation Process: 1) getting an abstract syntax
tree from input code 2) extracting objects and actions 3) cre-
ating solution and initial mini-maps 4) building paths for
each map 5) merging mini-maps

Methodology
The generator takes as input a solution code and outputs a
level layout that can be solved using that code. The generator
is divided in modules to allow for flexibility, modification,
and reuse for different purposes. In fact, it is recommended
to break the process down into multiple steps to design suc-
cessful grammar based systems (Togelius, Shaker, and Dor-
mans 2016). The full process can be seen in Figure 2. In this

section, each module is described in detail using the example
in the figure.

Abstract Syntax Tree Generation
This step takes the input code as a string and extracts the
abstract syntax tree (AST) from it. This step is simple, but
allows the system to be more generalizable since from this
step forward, the generation does not depend on the source
language but only on the AST. In the first step of Figure 2,
we can see that the code presents three command calls:
MoveLeft once, and Rotate(“right”) twice.

Game objects and actions extraction
From the AST, we extract each object, a list of commands
applied to it, as well as a list of attributes. The same
command will be merged together in this format: (com-
mand name, arguments, n) where n is the number of times
that command is repeated. If the command takes no ar-
guments, that field will be empty. For attributes, the for-
mat is (attribute name, initial state, desired state). In gen-
eral, the desired state is extracted from comparison operators
in an if statement or while loop. In the example, we obtain
block1(MoveLeft, 1) and block2(Rotate, “right”, 2) . An ex-
ample of an attribute would be if we had a stoppable block,
we would have (isMoving, true, false) where the block is
initially moving and should be stopped in the desired state.

Grammar-based solution mini-map generation
For each game object, there are possible shapes, or possi-
ble gameplay elements it can incorporate. Depending on the
game object name and its actions and attributes, the grammar
rules are traversed until a final shape is found. The gram-
mar rules are extended with probabilities so that some rules
are more favored than others. The probability distribution
can be chosen as input and can be either uniform (all rules
have the same probability of being chosen), favors complex-
ity, or favors simplicity where, respectively, rules with more
complex/simple shapes will be favored. Further, when a spe-
cific rule is applied, a penalty value is added. The penalty
value can also be changed as input and can range between
0 (no penalty) and 1 (each rule can only be applied once).
When the penalty value for a rule reaches 1, that rule is no
longer considered. This penalty is to guarantee that the same
rule cannot be applied too many times and that the layout is
diverse. The shape obtained from the grammar traversal is
placed in the solution mini-map, meaning the shape is placed
as it would be when the map is solved. Figure 2 shows the
solution maps for each of the objects in step 3. Having sepa-
rate mini-maps for each object maintains the intended game-
play since players have to solve the level in one submission,
however, this limits some gameplay opportunities where ob-
jects can influence each other.

Initial mini-map creation
Next, the actions obtained from step 2 are applied to the so-
lution maps in reverse. For example, if the action is MoveUp,
then the object is moved down. This is repeated until all ac-
tions are applied.



Path Creation

To create a path in step 4, we use two different algorithms
depending on the shape of the object we get from the gram-
mar. If the shape’s gameplay is focused on revealing a re-
ward, such as fire statues or levers, we use the reward path
algorithm, which mostly fills the map with walkable tiles
and then removes tiles from the corners up until a predefined
threshold.

At the start of the reward path algorithm, all empty tiles in
both initial and solution maps are filled with walkable blocks
B. Then, we get all four corner tiles of the map, choose a
valid one to remove, and move to its neighbors until no valid
neighbors are available. A tile is considered valid if it does
not break the path in the solution map. We chose this ap-
proach to have the tiles removed in a systematic manner and
not randomly in order to obtain a map that looks closer to
the hand-designed maps.

If the shape’s gameplay is more maze-based, such as a
block that can be walkable or that can obstruct a path, we
use the maze path algorithm, which takes as input both the
solution map and initial map to make sure that 1) there is a
path between the entry and exit in the solution map, and 2)
there is no path between entry and exit in the initial map. If
there is no solution that satisfies these conditions, the first
rule is prioritized to assure that, when a level is solved, the
player can make their way from entry to exit. If the second
rule is not satisfied, this means the player may be able to
walk to the exit without having to solve the puzzle.

In the maze path algorithm, the entry and exit, which we
refer to as EN and EX, are fixed at the start. After choosing
these points, we find all walkable tiles in the solution map.
Then, we find points (a) and (b) which are respectively the
closest tile to EN and EX in the walkable tiles. Finally, the
shortest paths will be drawn from EN to (a), EX to (b), and
(a) to (b). The same path is also drawn in the initial map. If
the resulted path is walkable from EN to EX in the initial
map, we remove tiles that break that path as long as they
do not break the solution path. This again ensures the first
condition of solvability of the puzzle. Finally, the last part
of the maze path algorithm, which adds tiles back into the
path, is purely for aesthetics reasons and variability to add
different shapes of paths and not just narrow ones.

Mini-map Combination

Since we could have many mini maps to combine depending
on how many programmable objects are in the code, in step
5, we consider the best way to combine them. We determine
the best combination based on the goal of minimizing the
cost of combination. If two maps can be combined without
modification, they have a 0 cost, while the need for modifi-
cations can result in costs depending on the positions of the
doors E (EN or EX). Combining two maps needs modifica-
tions when they don’t have opposing edges that share a door.
In this scenario, the merged map is made bigger and a path is
created between the entry and exit. This process in this step
is minimized by finding the best combination of the maps
that guarantees the minimum cost.

Miscellaneous Placements
To have a fully functional map, we add the Player tile in front
of the entry. The coding tile is placed in a way that is accessi-
ble from the entry. Finally, rewards are placed depending on
their type. Closed and hidden doors are placed along walls
that are accessible. If there are no available, accessible walls,
the doors are placed and then a path is created to make sure
they are accessible. Hidden keys are placed anywhere on the
walkable path. Finally, headers are added to the file, which
determine the actions of pressure plates, levers, and fires, as
well as the objects that can activate them.

Evaluation
To evaluate our system, we look at metrics related to both
the education aspects and game aspects. For the educational
requirements, we first check that levels generated can be
solved using our input code. Further, we check if the level
can be solved using alternative codes with the same code
length. Finally, we check if the level can be solved with
shorter alternative codes. We are not worried with longer
codes since any level can theoretically be solved using a
longer code than what was intended. For a code to be con-
sidered working, there should be a path from entry to exit,
and from entry to any reward in the map, after the code is
applied. If one path is missing, the code is not considered
working.

Alternative codes are generated from the original code,
by 1) searching for alternative commands that can be ap-
plied to a game object and 2) constructing codes us-
ing each combination of alternative commands. For ex-
ample, if our code contains object1.MoveLeft() and
object2.Rotate(“right”), there are 4 Move commands
(one in each direction) that can be applied to object1 and 2
Rotate commands (left/right) that can be applied to object2.
This results in 8 different codes: 7 alternative codes and the
original input code. More broadly, the number of alternative
codes can be written as

∏n
i=1 comb(Oi) where n is the num-

ber of objects and comb(Oi) is the number of combinations
for object Oi.

Alternative shorter codes are generated by 1) creating a
list of all commands and constructs in the input code and
2) finding all code combinations that use at most n − 1 of
commands and constructs, with n being the size of the list
extracted in step 1. For example if our input code contains
a while loop, an if statement, and two commands, the list
length would be 4, and the number of possible combina-
tions would be 15. More generally, the number of alterna-
tive shorter codes can be written as

∑n−1
r=0

(
n
r

)
. If (n = 1)

the only shorter code possible is an empty code.
To evaluate the design of the levels, we look at three met-

rics: map size, percentage of interactable objects over map
size, and percentage of walkable tiles over map size. It is
difficult to find more appropriate metrics to evaluate the lev-
els since the gameplay is decided through the input code. In
fact, the input code has the biggest impact over what kind of
levels would be generated. Further, the variety of objects and
game mechanics is limited by what’s afforded in the original
game. Evaluating the map shape is also not interesting since



Lvl Elements Gen. Time (s) Input Sol. Alt. Sol. Alt. w/ Sol. Short Sol. Short w/ Sol. Size

0 1 moving block 0.11 ± 0.03 100% 4 49.5% 1 13.5% 99.34
1 1 2 moving blocks 0.39 ± 0.07 100% 16 72.1% 3 24.8% 240.98
1 2 moving block, moving statue 1.17 ± 0.6 100% 64 67.2% 7 27.4% 318.24
2 3 1 rotating fire statue 0.12 ± 0.03 100% 2 0% 1 0% 160.62
3 1 3 rotating blocks 0.51 ± 0.1 100% 8 91.9% 7 37.2% 464.72
3 2 for loop and 2 moving blocks 0.54 ± 0.16 100% 16 70.6% 7 36.4% 350.38
4 2 lever, door, conditional 0.06 ± 0.01 100% NA NA NA NA 89.04
4 6 stoppable block, while loop,

conditional, pressure-plate
0.12 ± 0.02 100% NA NA 1 9.9% 249.87

avg 0.38 ± 0.13 100% 18.33 47.35% 3.85 21.31% 246.64

Table 2: Results of 1000 runs for 7 different game levels; with uniform distribution, threshold = 2, grammar penalty = 0.5. Input
Sol. = the input code is a solution; Alt. Sol. / Short Sol. = number of possible alternative / shorter codes; Alt. w/ Sol. / Short w/
Sol. = percentage of times there was at least 1 alternative/shorter code that is a solution; Size = average size of the map in tiles.)

Figure 3: Expressive range for each level in terms of percentage of walkable and interactable tiles (1000 runs, 0.5 penalty, 2
threshold). X axis: % walkable (0 to 0.5). Y axis: % interactable (0 to 0.1)

player movements are restricted to the path and the player
cannot fall off, meaning there is no difficulty attached to the
layout of the map.

Results
We ran the generator with the solution codes from 8 differ-
ent levels in the game, including a variety of game objects
and constructs. Every code was run 1000 times and the re-
sults are presented in Table 2. Overall, every level generated
was solvable using the input code, which is expected since
it is guaranteed by construction. Further, on average 47.35%
of the levels generated had an alternative working solution
(Alt. w/ Sol.), which means about half of the levels generated
provide different equally difficult ways to solve the prob-
lem. This can be a nice balance between levels that have a
unique solution vs levels that offer the players multiple ways
to solve them. From Table 2, we can see that the percentage
varies considerably across levels, which is again expected.
For example, in level 2 3 the game object can only be re-
ward based, which makes it impossible to have alternative
solutions since the only way to get the reward would be to
use the input code. On the other hand, levels that are purely
maze-based and have no rewards such as 3 1 have a much
higher rate of alternative solutions (91.9%). These levels
would also have the highest rate of short solutions working.

Overall, 21.31% of the levels generated had working shorter
solutions (Short w/ Sol.), with again variations across lev-
els. Levels with more lines of code and more objects would
have more possible alternative solutions and therefore more
chances for them to succeed. For example, levels (1 2, 3 1,
3 2) with the highest number of shorter solutions (7), unsur-
prisingly, have the highest rate of shorter solutions solving
the puzzle. Looking at specific levels, such as level 4 2, al-
ternative codes and shorter codes are not applicable. This
comes from the original design of such levels. This level’s
code cannot be modified in the game. The gameplay consists
of understanding the code and making appropriate changes
in the environment so that when the code executes, it re-
veals a reward. Another particular level is level 4 6 where
we haven’t defined alternative codes for the Stop or Open
commands which makes alternative codes not possible.

To analyze the variety of the levels generated, we looked
at the expressive range of the generator in accordance to the
percentage walkable (X axis, 0 to 0.5) and interactable (Y
axis 0 to 0.1) tiles over the size of the map. In figure 3, we
can see how the heat maps change depending on the level.
We notice that the expressive range tightly follows the de-
sign and the possibilities allowed by the game, as well as the
size of the map. For example, level 0 has a moving block
which has 1/3 chance of yielding a reward thus making the



Figure 4: Expressive range with probability distribution variation for level 1 2. From left to right: favors simplicity, uniform,
favors complexity. X axis: % walkable (0 to 0.5). Y axis: % interactable (0 to 0.1)

Figure 5: Examples of generated levels for level 1 2. From
left to right, solvable with only input code, solvable with
input and alternative, solvable with shorter code.

rate of interactable objects mostly low with a few scattered
higher rates. On the other hand, levels 1 2 and 4 6 are re-
ward based levels which gives a higher rate of walkable
tiles. Levels with many interactable objects (level 3 2 and
4 6) tend to have bigger maps which makes the percentages
of interactable and walkable much more concentrated. Fig-
ure 4 shows the effects of varying the probability distribution
in level 2 1. This level was chosen because it has a combi-
nation of objects that can be maze-based or reward-based
which makes it more representative. In this level, players
need to move a statue to the right twice and move a block
up once. We can observe significant changes between the
distribution that favors simplicity and the uniform one. The
change is not that noticeable between the uniform distribu-
tion and the one that favors complexity. However, while the
heat maps seem similar, the brightest area on the complex
one is on the higher end and the brightest area for the uni-
form one is on the lower end of the shape.

Figure 5 shows some examples of generated levels for the
code of level 2 1. The left example shows a level that can
only be solved with input code, players need to move the
fire statue to get a key and move block1 on a pressure plate
to reveal a hidden block. In the middle example, block1 can
be moved either up or right to complete the path allowing
for one alternative solution. However, in the right exam-
ple, block1 does not need to be moved at all and only the
statue needs to be moved to clear the path, which results in
a shorter solution.

Discussion & Limitations
The results show that the generator successfully creates lev-
els that are solvable using the desired input code, however,
some of them are still solvable by shorter “less difficult”

codes. These levels may or may not be desirable. In some
cases, the designer may want levels that have an obvious
longer solution and perhaps a shorter cleverer one. We do
not claim that this is the case with the levels generated. But,
we point out that it may be desirable in some special case,
and the decision can be left up to the designer. If we want
to completely remove the shorter solutions, we could add
constraint checkers at different stages of the generation and
discard parts of the map that violate certain conditions. An-
other way is to include the maps created by the shorter codes
in the generation process and make sure none of them has a
solution when creating the paths. This will increase the gen-
eration time, but we believe it will still be reasonable for
in-game generation given that it is now at 0.38 seconds on
average. While our approach is applied to a programming
game, the same concept can be reproduced in a puzzle game
where instead of code, the input would be game play vocab-
ulary as in (Van der Linden, Lopes, and Bidarra 2013).

One limitation of this work is that the creation of al-
ternative solutions is specific to the gameplay and affor-
dances of the game and cannot be easily imported into an-
other game. Another limitation is that while inputting code
grants full control to the designer, it is not accessible to
non-programmers or even programmers who are not famil-
iar with the programming language of the game. One way to
tackle this is to build a code generator that will take as in-
put coding constructs and synthesize valid code that can be
input to this generator. That way, the user would only select
the learning constructs they want.

Conclusion
In this paper, we presented a grammar based modular ap-
proach to generate levels in a programming puzzle game.
The approach works backwards from a solution code and
uses both the solution map and the initial map to ensure that
levels are solvable using the input code. The levels gener-
ated allow variation in the solution space through alterna-
tive codes while minimizing shorter, more trivial solutions.
However, some of them still allow shorter codes. In the fu-
ture, we want to improve on the approach, build a user-
friendly interface and conduct a user-study with designers.
Further, we would like to work on integrating procedurally
generated levels within the game according to some player
model that will inform us about the coding constructs that
the player needs practice with.



Acknowledgements
This research is supported by NSF AISL (Advancing Infor-
mal STEM Learning) Award Id: 1810972.

References
De Kegel, B., and Haahr, M. 2019. Procedural puzzle gener-
ation: a survey. IEEE Transactions on Games 12(1):21–40.
Dong, Y., and Barnes, T. 2017. Evaluation of a template-
based puzzle generator for an educational programming
game. In Thirteenth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Font, J. M.; Izquierdo, R.; Manrique, D.; and Togelius, J.
2016. Constrained level generation through grammar-based
evolutionary algorithms. In European Conference on the Ap-
plications of Evolutionary Computation, 558–573. Springer.
Harteveld, C.; Smith, G.; Carmichael, G.; Gee, E.; and
Stewart-Gardiner, C. 2014. A design-focused analysis of
games teaching computer science. Proceedings of Games+
Learning+ Society 10:1–8.
Jemmali, C.; Bunian, S.; Mambretti, A.; and El-Nasr, M. S.
2018. Educational game design: an empirical study of the
effects of narrative. In Proceedings of the 13th International
Conference on the Foundations of Digital Games, 34. ACM.
Jemmali, C.; Kleinman, E.; Bunian, S.; Almeda, M. V.;
Rowe, E.; and El-Nasr, M. S. 2019. Using game design
mechanics as metaphors to enhance learning of introductory
programming concepts. In Proceedings of the 14th Inter-
national Conference on the Foundations of Digital Games,
1–5.
Miljanovic, M. A., and Bradbury, J. S. 2018. A review
of serious games for programming. In Joint International
Conference on Serious Games, 204–216. Springer.
Park, K.; Mott, B. W.; Min, W.; Boyer, K. E.; Wiebe, E. N.;
and Lester, J. C. 2019. Generating educational game lev-
els with multistep deep convolutional generative adversarial
networks. In 2019 IEEE Conference on Games (CoG), 1–8.
IEEE.
Shaker, N.; Liapis, A.; Togelius, J.; Lopes, R.; and Bidarra,
R. 2016. Constructive generation methods for dungeons
and levels. In Procedural Content Generation in Games.
Springer. 31–55.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Transactions on Computational Intelligence
and AI in Games 3(3):187–200.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 1–
7.
Smith, A. M.; Butler, E.; and Popovic, Z. 2013. Quantify-
ing over play: Constraining undesirable solutions in puzzle
design. In FDG, 221–228.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(pcgml). IEEE Transactions on Games 10(3):257–270.

Taylor, J., and Parberry, I. 2011. Procedural generation of
sokoban levels. In Proceedings of the International North
American Conference on Intelligent Games and Simulation,
5–12.
Togelius, J., and Shaker, N. 2016. The search-based
approach. In Procedural Content Generation in Games.
Springer. 17–30.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Togelius, J.; Shaker, N.; and Dormans, J. 2016. Grammars
and l-systems with applications to vegetation and levels. In
Procedural Content Generation in Games. Springer. 73–98.
Traichioiu, M.; Bakkes, S.; Roijers, D. M.; et al.
2015. Grammar-based procedural content generation from
designer-provided difficulty curves. In FDG.
Valls-Vargas, J.; Zhu, J.; and Ontañón, S. 2017. Graph
grammar-based controllable generation of puzzles for a
learning game about parallel programming. In Proceedings
of the 12th International Conference on the Foundations of
Digital Games, 1–10.
Van der Linden, R.; Lopes, R.; and Bidarra, R. 2013. De-
signing procedurally generated levels. In Ninth Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.


