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ABSTRACT
Learners’ backgrounds, skills, and knowledge vary as they attempt
to learn a new subject. To address this variation and allow learners
to progress at their own speed, many researchers are suggesting
adaptive learning as a solution. Adaptive content has been success-
ful in learning environments such as intelligent tutoring systems,
but it has not been thoroughly researched within video games, es-
pecially in terms of adaptive procedural levels. In this paper, we
analyze the effects of procedural levels that are generated and in-
serted at run-time in between pre-designed levels in the educational
programming game May’s Journey. Our study with 94 Amazon Me-
chanical Turkers shows that players encountered fewer code-related
errors in the adaptive version, however, their engagement levels
were similar, if not slightly higher in the non-adaptive version.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI ; •Ap-
plied computing→ Interactive learning environments.
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adaptive game, programming game, educational game, adaptivity
assessment, debugging
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1 INTRODUCTION
Game-based learning holds a great promise for deep and innovative
learning opportunities. Researchers have identified how games can
be be used in multiple educational contexts to teach a variety of
subjects. Educational games have been proven to be effective at
improving learning outcomes [3, 7, 53]. In addition to enhancing
learning, game-based learning has also been suggested to foster
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student’s engagement in learning activities [16]. Despite the preva-
lence of games to teach programming, there is little evidence of the
effectiveness of these games or their learning outcomes [15, 25, 39].
In fact, many of these programming learning environments can be
either too simple to effectively teach programming or too compli-
cated for beginners, especially when faced with debugging. For the
latter, in the absence of external help, players can get stuck, feel
frustrated, and may quit if a challenge is too difficult or if they have
not fully mastered the learning content for advanced levels. There
is therefore a need to have an internal help or practice mechanism
within the game that targets individual players.

The benefits of adaptive content are acclaimed by researchers
throughout the online education spectrum, whether for tools,
games, or intelligent tutoring systems. In this paper, we discuss
adaptivity in terms of level generation, which means that levels are
generated at run-time, for a specific purpose, for a particular player
according to some in-game heuristics or player model. To the best
of our knowledge, the only existing programming adaptive game
does not adapt in terms of levels but in aspects related to hints and
difficulty [18]. Further, there is very little research that assesses
procedurally generated levels that are seamlessly integrated within
a game in general. This lack of assessment makes it difficult to
decide when and how to integrate such levels, which we discuss in
following sections.

In this paper, we attempt to answer the research question “Can
targeted debugging practice levels result in stronger engagement,
more levels played, and better debugging performance?”. In our
case, we refer to debugging as fixing compile-time errors. We focus
on debugging, since it is one of the greatest hurdles when learning
programming [26, 29, 40]. We conducted a study with 94 Amazon
Machanical Turkers who played a programming narrative puzzle
game called May’s Journey. Players played one of two versions:
adaptive or non-adaptive. In the adaptive version, we integrated
a procedural level generator that creates levels similar to existing
levels of the game at run-time [22]. The result is a version of the
game that provides targeted levels to debug a specific error message
that the player was encountering. Our hypotheses are as follows:

• H1: Players in the adaptive version will show better in-game
performance than players in the non-adaptive version in
terms of the average number of errors per level, their ability
to respond to error messages, and levels completed.

• H2: Players in the adaptive version will have fewer errors on
average after encountering a targeted practice level.

• H3: Players in the adaptive version will report stronger en-
gagement with the game in the post-game survey.

https://doi.org/10.1145/3555858.3555892
https://doi.org/10.1145/3555858.3555892
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2 RELATEDWORK
We divide our related work into three main sections where we dis-
cuss previous research on practice and learning, then more specifi-
cally practice for debugging and programming, and finally adaptiv-
ity in existing educational games.

2.1 Practice Problems
Practice can improve accuracy and speed of performance in cog-
nitive, perceptual, and motor skills, under certain conditions [12,
13, 51]. One of the conditions for optimal learning is the learners’
motivation to attend to the task and exert effort to improve their per-
formance [11]. These findings are also reiterated for programming
practice. In a study about the relationship between the voluntary
practice of short programming exercises and exam performance,
Edwards et al. [10] found that voluntary practice did improve per-
formance on exams, but also that motivation may play an important
role. However, merely practicing may not be sufficient and tasks
should take into account pre-existing knowledge of the learners
and provide adequate feedback [11]. For this reason, we make sure
that the adaptive practice levels we introduce target specific error
messages that players could not debug.

2.2 Practice Problems for Debugging
Several tools teach debugging, from tutors [6, 28, 32] to games tar-
geting debugging specifically [34, 38] or debugging through domain
knowledge [14, 24], which is the type of knowledge targeted by
most tools surveyed by Li et al. [35]. Most of these tools are also
pre-designed and do not adapt to players’ specific needs. Carter’s
tutor [6] uses a case-based reasoning approach where a case con-
tains a defect and represents a specific troubleshooting setting. The
cases are generated dynamically using templates specific to pro-
gramming topics but do not adapt to learners. To help learners
debug C++ programs, Kumar [28] created an Intelligent Tutoring
System using Model-based Reasoning for domain modeling. The tu-
tor can generate problems from templates and give feedback in the
form of code and state explanations. However, while it theoretically
can adapt to students, this feature has not been explained or stud-
ied in the paper. On the other hand, Lee et al.’s tool Debug It [32]
adapts to player’s performance but relies on pre-defined problems
which makes the adaptivity less targeted. Further, all these tools
use exclusively exercises of the type “Modify” in the taxonomy of
the Use-Modify-Create (UMC) framework [33]. In “Use” exercises,
students use code and maybe only modify a small thing such as a
literal value. In “Modify”, they are given incomplete or incorrect
code. Finally, in “Create”, students will design their own code. It
is suggested that students learn better with interleaved exercises
than blocked ones [47]. It is therefore important to have the stu-
dents practice with all types of exercises from the UMC framework.
Crescendo [50], a tool for practicing programming successfully
used interleaved problems and their preliminary results showed
that it can be effective in leading students into independent, moti-
vating, and rewarding programming experience. To the best of our
knowledge, there are no existing tools that dynamically generate
levels that target specific error messages that a player is struggling
with.

2.3 Adaptive Educational Games
Educational games aremostly designedwith a fixed progression and
predefined levels. However, several researchers calling for dynamic
tailoring of difficulty on a per-player basis have emerged [54]. This
push for adaptive content in educational games is driven by the
success and the popularity of Intelligent Tutoring Systems (ITS) [52]
and Adaptive Hypermedia [5].

Procedural Content Generation has been used successfully in
commercial games such as Diablo1 and NoMan’s Sky2, however, the
usage of PCG within adaptive educational games remains limited,
and when available is mostly focused on areas such as Dynamic
Difficulty Adjustment, path-finding, and NPC (Non-Playing Char-
acter) [8, 48]. In General, the use of PCG in educational games is
still limited, and when used the effects of adaptivity are not always
tracked. For example, in a study assessing the effects of large-scale
campaigns for education, Liu et al. [36] used DragonBox Adaptive,
an algebra teaching game that provides students with different sets
of dynamically generated problems for additional practice depend-
ing on how they performed on embedded assessments. However,
since there was no data from the original game DragonBox, they
could not assess the effects of the adaptivity. Besides adaptivity,
there are noteworthy instances of non-adaptive applications of PCG
in educational games. For example, Refraction [44] an educational
game that teaches mathematical skills and problem-solving has pro-
cedurally generated puzzles. However, Refraction simply replaces
a typical human-designed level with a computer-designed level;
it does not attempt to adapt during gameplay. Another example
is GrACE [19], an educational game that teaches Computational
Thinking (CT) through solving puzzles related to Minimum Span-
ning Trees. GrACE allows players to request new procedurally
generated puzzles at the same difficulty level throughout the game.
When testing the effects of the PCG in-game, they found that when
PCG is used in an individual context, it increased learning gains as a
result and that was especially noticeable for the more abstract puz-
zles which can promote abstract thinking according to the authors.
While these are promising results, the level generation was not in-
tegrated adaptively. Autothinking is another game that teaches CT
skills [18] through a maze-based environment similar to Pac-Man
but with delayed controls. The game uses adaptive content through
the manipulation of the NPCs (the cats trying to catch the mouse
representing the player) and through providing hints. However, it
does not adapt in terms of content or level generation.

In contrast, our approach includes procedurally generated lev-
els created during run-time that are encountered in between pre-
designed levels to provide more practice before progressing into
the game. The generated levels target a specific error message that
a player was encountering and are blended in the storyline to make
a cohesive transition and preserve flow.

3 METHODOLOGY
In this section, we first introduce the game we are using, the steps
of generating an adaptive level and the way we integrate it into the
original game.

1https://diablo2.blizzard.com/en-us/
2https://www.nomanssky.com/
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Figure 1: First level introducing arrays. Players need tomove
the elements with index 3 and 5 of the array of blocks down
andup respectively. Players can type on the right side,where
they are given the first command. On the bottom left, they
are introduced to arrays with examples and explanations. In
the middle they can see their code execute in real-time.

3.1 May’s Journey
May’s Journey is a 3D narrative puzzle game where players navi-
gate a broken game world that is made of code [21, 23]. Players are
tasked to help the main protagonist May understand the mystery
of the recent events that broke the code of the world. Throughout
the journey, players need to code their way out of various puz-
zles, collecting artifacts, meeting NPCs, and acquiring companions.
The most notable character the players meet is the Oracle, who is
a powerful being, that helped connect May with the player and
assumes the role of guide and mentor throughout the game. The
gameplay can be explained as two interleaving phases: exploration
and programming. Various areas of the world are inaccessible until
the player solves coding challenges. These coding challenges in-
volve interacting with the objects in the environment through code
by moving, rotating blocks and platforms, lighting fire platforms,
activating pressure plates, or changing values of variables such as
block weights. The game’s programming language is a simplified
custom object oriented language where the emphasis was made on
making error messages simple, understandable, and accessible for
beginners.

The learning content progresses from simple instructions, to
loops, variables, inputoutput, conditionals, and arrays. An example
level can be seen in Figure 1 where players are introduced to arrays.
Players type in their code in the coding interface on the right and
make two types of errors; code-related or puzzle-related, which can
be seen in the output area (bottom right). Code-related errors can
be either purely syntactic or semantic such as using the wrong type
of variable or function. Puzzle errors can be seen as logic errors:
the code compiles with no errors but it does not solve the problem.
In this study, we focus on code-related errors.

3.2 Adaptive Level Generation
The goal of the level generation is to provide players with an easier
level in which they can practice debugging an error they were
encountering in a pre-designed level. The idea of an easy practice is

Figure 2: Steps of Generating an adaptive Level. Step 1) Gen-
erating code that can solve a level and a similar code to pro-
vide an example. Step 2) The last error encountered by the
player is inserted to each code. Step 3) The wrong and cor-
rect example codes are used to provide an example of how
to debug an error. Step 4) The correct practice code is used
to generate a level. Step 5) The example and wrong practice
code are added to the level interface.

to isolate a specific error, since their code could contain more than
one, which would make it harder to identify and debug. Figure 2
shows all the steps needed to generate a fully playable adaptive
level in an automated way.

• Step 1: Generate 2 codes; one will be input to the procedural
level generator described below (practice code, top-right
code in figure 3), and the other will be used to create an
example to the player (example code, bottom left code in fig-
ure 3).

• Step 2: Given the last error that the player has encountered,
insert that error to both practice and example codes.

• Step 3: Given the wrong and correct example codes, create
an example for the player to follow when solving the level.

• Step 4: Generate the level given the input practice code from
Step 1.

• Step 5: Populate the generated level’s coding interface with
the wrong practice code that the player needs to correct and
provide the debugging example generated in Step 3.

These steps are explained in further detail in the following sub-
sections. In figure 3 the practice code, example code, and the error
messages associated with them are showcased as they would appear
in the game.

3.2.1 Step 1: Code Generation. Several tools exist that automati-
cally generate programming problems, and most of them use ei-
ther a template-based approach or Context-Free Grammars (CFG).
Template-based approaches [27, 41, 42, 49] provide the generator
with a structure to fill or with a learning objective containing meta-
data. The advantage of this approach is that it gives finer control
over the generated problems, and it also makes it easier to ensure
that the code generated is well-formed and executable. However,
this tight control will also limit the variety of problems generated.
CFGs [1, 17] are similar to the template-based approaches, where
the structure of the desired input is specified with a context-free
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Figure 3: Example of a procedurally generated level coding
interface, with the example on the bottom left and the initial
code on the right.

grammar G. Then, the generator reads G and uses its rule deriva-
tions to produce L(G), which is the language accepted by G. While
this methodology ensures that the code is well-formed, it requires
extensive derivation rules and must be very specific to a particular
problem or language.

Our generator uses a combination of these two techniques where
depending on the construct needed, it will either use a grammar or a
template. Our templates are simple and represent codes that include
if statements and while loops. We choose templates for these types
of codes because the way these levels exist in the game is very
specific and generating more varied codes is not useful in our case
since they can’t be used in the game. For simple instructions and
for loops, we use also a simple grammar where the rules represent
the type of object and the command applied to it and arguments if
any. The number of objects and commands applied to each can be
pre-selected or random. Both of these approaches do not generate
the code directly but rather generate an Abstract Syntax Tree (AST)
that is then translated into code. Similar to our level generator,
this step is added to keep our generator modular and applicable to
different languages and situations.

3.2.2 Step 2: Error Insertion. To create practice levels for specific
error messages, we need to be able to insert these errors into our
correct solution code. During some initial data processing, we iden-
tified the most common error type to be “missing X”, which in
general refers to missing ‘;’ or missing ‘}’. This example is the easi-
est to create an erroneous code that contains this error by simply
removing one of these tokens. However, one of the most common
errors was “The token X is out of place”, which could mean very
different errors. We have manually analyzed the data and for each
error that can be introduced more than once, we looked for how it
had occurred. Table 1 shows the errors we can insert in our levels
and how they can be inserted. For example, if the error is the at-
tribute does not exist, it is not necessarily a syntax error. In many
cases, players do not add the parentheses of the command which
leads to the compiler treating it as an attribute.

3.2.3 Step 3: Example Creation. Given the correct example code
generated in step 1 and its erroneous version generated in step 2,

Figure 4: The number of players quitting at each level

we provide the players with an example to follow that contains the
same error as the one they need to fix. The example can be seen in
Figure 3 on the bottom left side of the screen where we can first
see the error message, the wrong code and an arrow pointing to
the correct code.

3.2.4 Steps 4 & 5: Level Generation. To generate the levels we
use a grammar-based level generator that works backwards from
a solution code to generate a level that can be solved with that
code [22]. The generator insures solvability by construction. The
original generator attempts to have levels non-solvable by shorter
code solutions, considered as easier solutions, but it still happens in
21% of the cases according to the creators [22]. Since the generation
time is short (0.38 seconds), we test for such cases and regenerate
if a level can be solved with an easier solution.

Once a satisfying level is created, we populate the coding inter-
face on the right with the practice code that players need to fix,
and the example interface on the bottom left with the wrong exam-
ple code, the error message associated and the equivalent correct
example code as can be seen in Figure 3.

3.2.5 Timing & Integration. Timing, whether for adaptive con-
tent [45] or for feedback [43], is considered highly important. In
fact, it is very important to provide the learner with timely content
to avoid frustration or annoyance. However, we could not find best
practices or guidelines on “when is the right time to provide adap-
tive/personalized content?” in an educational programming game.
And the question is rarely specifically discussed in the literature.

In the absence of a formal procedure, we decided to analyze
previous data to decide on an appropriate threshold to present an
adaptive level to the player. The data was collected from a previ-
ous study conducted on the latest version of the game. The data
included 50 players aged between 9 and 14 years, who made at least
one code submission. There were 19 female participants, 24 males,
1 non-binary, and 6 students who preferred not to answer. When
asked about their programming experience, most of the players (33)
reported having experience with block-based programming, 6 play-
ers had experience with some text-based programming language,
5 used an object-oriented language, while 6 had no experience at
all. When analyzing players’ data, we were interested in the quit
behavior. Specifically, when do players quit, and how many errors
do they encounter before they quit in each level. Our goal is to be
able to intervene and offer a procedurally generated level before a
player decides to quit.

From our data sample, we could not find obvious patterns after
which players quit. In fact, when analyzing their last action in the
game, half the time they were in the exploration phase rather than
the programming phase. However, we did observe that most of
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Table 1: A list of error messages for which a PCG level is created and the ways it can be introduced.

Error Ways it can be introduced
Missing X The most common occurrence of this error is with tokens ’;’ and ’}’ , but can also be

triggered with ’)’ and ’(’

The token X seems to be out of place

This error can be triggered in multiple ways:
- Missing main method
- Code outside of main method
- Main method missing both parentheses
- Main method missing opening curly bracket
- Extra curly brackets after commands

The variable X does not exist in this scope This can be either a syntax error (messing up capitalization or a typo by
adding/forgetting a character) or it can be a semantic error by using a variable
name from another level/example

The command X does not exist Syntax error in the command
The attribute X does not exist Syntax error in the attribute or removing parenthesis from a command
The command X does not take arguments be-
tween parentheses

Adding arguments to a command that doesn’t take any, like Move or Stop

The object X cannot be Y Applying the wrong command on an object (e.g rotating a movable object)
X must be called on an object Having a correct command without an object

Figure 5: Mean number errors players made before quitting
each level

Figure 6: Median number errors players made before quit-
ting each level

our players quit during the first 10 levels of the game. Figure 4
shows the number of players quitting at each level. We can see
that 37 of the players quit in the first 10 levels of the game with 12
players quitting in the first level where players are first introduced
to programming.

When looking at the average and the median number of er-
rors players make before quitting in each level, there were also
no patterns and the variance was high between levels and players.
Figures 6 and 5 show respectively the median and mean average

errors made by players who quit in that level. Levels that are not
shown don’t have any players that quit and levels with 0 mean that
players quit without getting any error. If we look at the first level
as an example, we can see that players make on average 4.17 errors
with a large standard deviation. The median number of errors for
that level is 1 which means that half of the players quit after only
one error. Levels with a high median like 5, 12, or 20 represent only
one or two players. Averaging across levels, players make on (mean)
average about 5 errors before quitting with a standard deviation of
7.5.

Given all this information, we have decided to introduce a pro-
cedurally generated level after 3 errors the first time and randomly
between 3 and 5 errors the following times. The error count is
reset to 0 after each level and is not activated during the generated
level. Further, a level is given only if a player has made at least
one code-related error and won’t be activated if the errors are all
puzzle-related. We have chosen 3 to make sure that we intervene
quickly enough the first time, and then added a bit of randomness
to make the adaptivity less obvious and less expected.

3.2.6 In-game integration. To make the level generation as seam-
less as possible and part of the game, we chose to integrate it as a
glitch. In fact, since the game world’s code is breaking, a glitch is
fitting. When a player is coding and the threshold for generating
a level is reached, the coding interface disappears, a glitch effect
appears for 2 seconds and the player is transported to the generated
level where they are greeted by the Oracle who explains that the
game world is breaking faster than expected and she needed the
player to help her fix a program in another area of the world.

Since players are mostly quitting in the first few levels of the
game, we limited the application of adaptivity to the first 15 levels
of the game. After a small pilot study, we have also discovered
that introducing adaptive levels in the first level of the game can
be more confusing than helpful, which is why we introduce them
starting from level 2. We have also limited the scope of the code
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generator to only generate code for 1 object with a simple command.
Commands are unlocked as the player learns them in the game. The
same limitation is applied to the example code. Since the purpose
of the generated level is to practice debugging an error in an easier
environment, the generated level is created in a way that would
minimize any other overload. An example can be seen in Figure 3
where the error is “the token X is out of place”. Both the example
and the practice code show the same trigger for this error, which
is removing the opening parenthesis of a function. If the error is
“missing X” the token to remove is chosen randomly in each case
and can be the same or different in the practice and example code.

4 USER STUDY
To study the effects of the targeted levels, we conducted a between-
subject study with Amazon Mechanical Turkers. We chose them as
our participants for their growing popularity amongst researchers
looking for a wide range of individuals to generalize their find-
ings [2, 30, 31]. Moreover, through one of our previous user studies,
we noticed that they constitute a good base of users who don’t
usually have programming experience [21]. We limited the recruit-
ment to participants that are located in the United States to limit
language issues.

Participants were randomly assigned to one of the game con-
ditions, adaptive or non-adaptive. These conditions differed in
whether or not the adaptive practice levels are triggered. In the
adaptive version, the levels are triggered as discussed in the pre-
vious section, but in the non-adaptive version, nothing additional
happens. Each user was asked to sign-up, and provide some demo-
graphic information such as age, gender, and programming experi-
ence. Then, they would play the game for at least 30 minutes, during
which all their game actions are logged. Finally, they can access a
short post-game survey where they can provide their impressions
of the game. Participants were compensated with $5 for their time.

5 PARTICIPANTS
Our inclusion criteria for the data was that players make at least
2 code submissions. We chose 2 since in the first level players are
asked to click run and submit the code given to them as part of
the tutorial. This inclusion criterion is also meant to minimize
the instances where participants did not actively play the game
and simply waited for the timer. These participants were excluded
from the study. We ended up with 94 eligible participants with 49
in the adaptive version and 45 in the static version. The gender
distribution is as follows: 70 males, 22 females, 1 non-binary, and
1 who preferred not to answer. The mean age of the participants
was 35.71 with a standard deviation of 8.96. Surprisingly, when
asked about their programming experience, only 32 participants
reported no experience while most of them reported being either
a professional programmer (25) or pursuing a degree in CS or a
related field (28). It is unclear whether this question was always
answered correctly, or could have been misunderstood by some
players whose data did not reflect their expertise.

Figure 7: The distribution of howmany adaptive practice lev-
els were introduced in each level

Table 2: The errors that had practice levels generated and the
number of times they have been generated.

error message number of
levels

The token X seems to be out of place 22
The command X does not exist 16
Missing X before Y 15
The variable X does not exist in this scope 12
Missing X 7
no error 5
The command X does not take arguments be-
tween parenthesis

3

6 RESULTS
To understand how players’ performance may have been affected in
the adaptive version, we first looked at in-gamemetrics. Our hypoth-
esis is that players in the adaptive version would have fewer errors
in general, fewer code-related errors (excluding puzzle errors), and
would solve more levels (including procedurally generated levels).

6.1 Adaptive Levels Statistics
First, we take a look at how the adaptive levels were distributed
across players. Out of 49 players in the adaptive version, only 26
players have encountered a targeted practice level. A total of 80
levels were generated with an average of about 3 per player. Figure 7
shows when adaptive levels were introduced to players. The highest
occurrences appear in levels 4 and 6, which represent respectively
the second programming level where players move two blocks and
the fourth programming level in which players need to align stairs.
As the game progresses, fewer practice levels are introduced both
because errors tend to be more puzzle-related at this point and
because most players have not made it that far into the game.

In Table 1, we can see which errors were introduced in the
PCG levels. The most popular are consistent with popular errors in
similar programming languages found in previous work specifically
in Java [4, 9, 20, 46] “The token X seems out of place” or “Missing
X before Y”. There are five levels with no error which means that
the error encountered did not have a rule on how to introduce it.
In this case, players would receive a correct code that they would
just need to run.
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6.2 Adaptive vs Non-adaptive
We compare the two versions of the game in terms of four variables;
levels attempted, average number of overall errors, and code-related
errors, and time spent playing (which refers to the time actively
playing, excluding the time where the game browser tab is not in
focus). We calculate the mean and median across players for each
version and report the Mann-Whitney U test since our data is not
normally distributed.

Table 3 shows the results for the four variables we looked at for
the participants as a whole. As can be seen from the p values of the
tables, none of the results are statistically significant, which means
there wasn’t a notable difference between the two conditions, (A)
for adaptive and (NA) for non-adaptive. Levels attempted is the
number of levels in which a player has made a code submission.
This number also includes targeted practice levels in the adaptive
version (A). From the mean values, we can see a higher average for
version (A) but also a very high standard deviation, which means
players in the adaptive version had larger differences. However,
the medians are exactly the same for levels attempted. A similar
trend can be seen in the average number of errors which is the total
number of errors divided by the number of levels attempted. We
chose to compare the average rather than the absolute value for
the number of errors since the number of levels played was not the
same and players who reach higher levels would naturally have
more errors. Finally as expected, the time spent in the game was
very similar with an average of ~27 and a median of ~29 minutes for
both versions which is close to the required time they had to play.
Some players, however, did not play the full 30 minutes while others
played for longer times, even if they didn’t have to. The longest
play-time was 1h45 minutes and the shortest was ~7 minutes.

Looking at participants as a whole did not show any major
differences; however, as mentioned in the previous section, only 26
players in the adaptive version have actually experienced a practice
level. Given this information, we decided to compare players who
have gotten a practice level against players in the non-adaptive
version who would have gotten such a level if they were assigned
to the adaptive version. The criteria for selection was that players
had passed the first level, and had at least 3 errors in one level (one
of which should be a code-related error). The criteria guarantee
that the player had or would have encountered at least one practice
level depending on the game version they were assigned to. This
subgroup would represent the players who needed more practice.
After the filtering, 47 players were retained, 26 of which were in the
adaptive version vs 21 in the non-adaptive version. Table 4 shows
the results for the same game variables for this subset of the players.
We can see from the table that players in the adaptive version have
attempted more levels 15 vs 4 (p < 0.001), had less average errors
1.78 vs 4 (p < 0.001) and less average code errors 0.89 vs 1.38
(p = 0.006). All these results were statistically significant. This may
be explained by the fact that the adaptive practice levels are made to
be easier to solve. To verify this explanation, we looked at the same
variables but without including the practice levels. The results are
reported in Table 5 where when using the whole data, players in the
non-adaptive version have fewer errors on average including code
errors, and these results are statistically significant. However, when
we only look at the filtered data, there is no difference between the

two conditions. This indicates that the practice levels are easier to
solve and were the reason why players in the adaptive version had
fewer errors when these levels were included.

Besides the number of errors, we also wanted to compare how
players responded to error messages. Specifically, a slightly different
version of %fix and an exact replica %bad presented by Marceau et
al. [37]. In our case, the measure %fix is calculated by dividing the
number of times an error was fixed by the number of times it has
occurred.%bad is not the opposite of %fix but rather a measure of
when players responded poorly to an error message and is measured
by summing the number of times an unrelated or a partial fix
was made and dividing by the the sum of unrelated, partial, and
full fixes. In Marceau’s work the focus was on assessing the error
messages but since our focus is the player, instead of calculating
these values for each error, we calculated them for each player.
This means once we have %fix and %bad for each error message
in each level, we average across errors encountered rather than
across players. We will call these new estimates %fix_p and %bad_p
with p referring to player. This number can be between 0 and 1
and represents the percentage of responding well or poorly to error
messages. The results can be seen in Table 6 in the two first rows.
No statistically significant difference can be observed between the
two versions. Again, we looked at the subgroup of players that
had/would have had a practice level, but in this case, no difference
was found between the two versions. The results are reported in the
last two rows of the table as %fix_p_f and %bad_p_f with f referring
to filtered.

Given these results, H1 holds partially since players who have
encountered a practice level in the adaptive version did perform
better than players who would have gotten one in the static game
version in terms of levels attempted (including practice levels) and
average errors, however, they did not perform better in terms of
responding to errors.

6.3 Adaptive version: Before & After
In this section, we look at the players in the adaptive version and
how their performance changed before and after receiving a prac-
tice level. Since we are looking at players’ behavior before and after
a practice level, only the players who have encountered one are
included which is 26. Specifically, we look at the average errors, the
fix, and the bad estimates. From Table 7, we can observe that players
had fewer errors on average and improved their %fix ratio after
encountering a practice level, but these results were not statistically
significant. However, players’ %bad ratio has also increased after a
practice level which means they were answering worse on average
and that result is statistically significant. This result may be due to
the fact that players improve on certain errors but not on others,
especially ones that they have not encountered, or ones that are
generally more difficult to fix. Further, as the game evolves more
constructs are encountered and more difficult errors are introduced
as a result. To further investigate this, we looked at the error mes-
sage players have received a practice level for. Specifically, we want
to examine whether those errors appeared less after practice. We
define before and after a practice level as all the levels that hap-
pened since the beginning/last practice level until the next practice
level/end. We found that the median was the same, 1, before and
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Table 3: Mean, median, and Mann Whitney U test for in-game variables for all players including practice levels. A represents
the adaptive version and NA is the static non-adaptive version.

All players, all levels including practice
mean A mean NA median A median NA U p

levels attempted 9 ± 11.66 4.46 ± 2.99 4 4 970 0.319
avg errors 5.45 ± 11.45 4.18 ± 4.72 2.45 3 1097 0.969
avg code errors 3.94 ± 11.72 1.6 ± 2.2 1 0.75 1006.5 0.473
time spent 25.73 ± 10.2 27.92 ± 14.53 29.24 29.52 1081 0.87

Table 4: Mean, median, and Mann Whitney U test for in-game variables for filtered players including practice levels. A repre-
sents the adaptive version and NA is the static non-adaptive version.

Filtered players, all levels including practice
mean A mean NA median A median NA U p

levels attempted 16 ± 12.28 5.90 ± 3.4 15 4 104 < 0.001
avg errors 1.91 ± 0.8 5.96 ± 5.28 1.78 4 68.5 < 0.001
avg code errors 0.91 ± 0.56 2.26 ± 1.83 0.89 1.38 148 0.006
time spent 30.55 ± 7.83 32.49 ± 17.92 29.99 29.67 227 0.334

Table 5: Mean, median, and MannWhitney U test for in-game variables for all players and filtered players, excluding practice
levels. A represents the adaptive version and NA is the static non-adaptive version. The three top rows represent unfiltered
data and the three bottom rows represent filtered data.

All players, without practice levels
mean A mean NA median A median NA U p

levels attempted 3 ± 2.65 4.47 ± 2.99 3 4 851.5 0.058
avg errors 7.55 ± 11.79 4.18 ± 4.72 4.5 3 780 0.014
avg code errors 4.81 ± 11.68 1.62 ± 2.2 1.6 0.75 832.5 0.041

Filtered players, without practice levels
levels attempted 4 ± 2.83 5.90 ± 3.40 4 4 221 0.273
avg errors 5.56 ± 5.73 5.96 ± 5.29 4 4 253 0.679
avg code errors 2.34 ± 2.57 2.27 ± 1.83 1.55 1.38 262.5 0.840

Table 6: Mean, median, and Mann Whitney U test for responses to error percentages %fix_p and %poor_p for all players and
%fix_p_f and %poor_p_f for filtered players. A represents the adaptive version and NA is the static non-adaptive version.

All players, all levels including practice
mean A mean NA median A median NA U p

%fix_p 0.32 ± 0.25 0.36 ± 0.32 0.29 0.36 1057.5 0.637
%bad_p 0.65 ± 0.26 0.62 ± 0.32 0.61 0.64 1090.5 0.821

Filtered players, all levels including practice
%fix_p_f 0.45 ± 0.17 0.50 ± 0.14 0.46 0.48 232 0.368
%bad_p_f 0.51 ± 0.16 0.48 ± 0.14 0.53 0.50 247.5 0.575

after U = 458.5 and p = 0.7691. This result can also be expected
since a player would make between 3 and 5 errors in the future and
most of them would be puzzle-related errors so the number of times
the specific error appears does not change in a significant way. We
did not look at %fix and %bad ratio since many times the error does
not appear at all and in that case, it is not clear what value should
be attributed since it will sway the data in one direction or another.
Further, since only 26 players are included, the sample size might
be too small to see a significant difference.

Given these findings, H2 cannot be supported and players do not
have fewer errors after solving a practice level.

7 POST-GAME RESULTS COMPARISON
7.1 Quantitative data
Out of the original 94 participants, 61 (32 in the adaptive version
vs 29 in the static) have completed the post-game survey which
contained 5 closed questions and 2 to 3 open questions. The results
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Table 7: Mean, median, and Mann Whitney U test for responses to error percentages %fix_p and %poor_p, before and after a
practice level has been encountered. A represents the adaptive version and NA is the static non-adaptive version.

mean before mean after median before median after U p
avg errors 3.65 ± 4.1 2.7 ± 1.4 3 2.5 1719.5 0.198
%fix_p 0.09 ± 0.64 0.37 ± 0.27 0.25 0.33 1466.5 0.08
%bad_p 0.24 ± 0.70 0.61 ± 0.26 0.5 0.59 1345.5 0.017

for the closed questions can be seen in Table 8. We can observe
a trend where players in the non-adaptive version seemed to like
the game more and wanted to play more but with no statistical
significance. Players in the non-adaptive version also thought that
the game provides more help with a median of 5 vs 4 (p=0.048)
and were more likely to think that the game can be an effective
way to learn programming with a median of 5 vs 4 (p=0.002) and
these results are statistically significant. Players in both versions
thought of the game as equally difficult. When analyzing the post-
game results from the filtered subset of players discussed earlier,
we observe a similar trend as can be seen in Table 9. In this subset,
there were only 36 players, 21 in the adaptive version and 15 in the
non-adaptive one. In this table, we can see that players liked the
game the same but wanted to play more in the static version with
a median of 5 vs 4 (p=0.042). Players in the non-adaptive version
also thought that the game was easier although not statistically
significant. The same trend was observed for the questions about
the efficiency of the game as a learning tool and whether it provides
enough help with the latter having a larger gap with a median of
5 vs 3. Given these results, our H3 does not hold and in fact, the
opposite is true, players in the non-adaptive version seem to report
stronger engagement with the game. Although it is important to
note that players in both versions did like the game and mostly
reported to want to play more, however, players in the non-adaptive
version perceived it as more helpful and more effective.

7.2 Qualitative data
To attempt to understand the reason behind the unsupported hy-
pothesis, we analyzed the open-ended questions. These questions
ask the players what did they like/dislike most about the game.
Players are also asked if they encountered glitches in the game that
transported May into new levels. If they respond yes, they receive
another open-ended question asking them what did they think
about these levels. These questions are purposefully left vague to
not influence the players’ response. When analyzing the responses
to the question “What did you like most about the game?”, a single
coder assigned a theme to each response, and responses that could
not be categorized were discarded. Such responses did not include
anything in particular that the player liked about the game, exam-
ples of these include “good”, “extremely like this game”, or “its very
interesting so i like the game”. Given these criteria 40 responses
were retained, 20 from each version. In a first pass through the re-
sponses, 19 categories have been identified. These categories have
been merged into 5 themes listed below:

• Learning: programming, learning, puzzle, creativity, strat-
egy

• Aesthetic: music, story, graphics, character
• Achievement: achievement, challenge, object collection

• Gameplay: gameplay, progression, movement, adventure
• Misc: unique, smooth, minimal instruction

Creativity and strategy were included with learning because it is
in the context of solving the puzzles. Table 10 shows the distribution
of responses over these categories. It is important to note that
one response could count in multiple categories, for example, a
player mentioned “I like the gameplay, character and graphics of
the game.” which would count in Gameplay once and Aesthetic
twice. It is interesting to see that most players like the game because
of its learning aspect mentioning specifically the coding aspect, the
puzzles, the challenge, and the sense of achievement. Examples of
quotes from players in the adaptive version are “As someone with
little coding experience, I thought it was an interesting way to begin
learning a new skill” and “It seemed like an interesting idea and I
liked figuring out the needed code”. In the non-adaptive versions,
examples are “I liked that the game made you think and wanted you
to solve puzzles by thinking creatively. It was fun and interesting”
and “I enjoyed the coding aspect and the artstyle was whimsical
and childlike”. More players in the adaptive version have mentioned
the learning and achievement aspects while the ones in the static
version have mentioned gameplay and aesthetics more. However,
when mentioning the gameplay specifically, that could also count
towards learning since the main gameplay is programming.

When analyzing answers to the question “What did you dislike
most about the game?”, we applied the same strategy as for the
previous question to eliminate answers that did not mention a
specific aspect, with the exception of answers that would fit in the
category Nothing which included answers that ranged from “none”
to “nothing” to “There’s nothing to be disliked”. With this criteria,
46 answers were retained with 24 and 22 in the adaptive and static
versions respectively. In these answers, we identified 16 categories,
however, 8 of them appeared only once and these include music,
interface, movement, control, etc. The most popular response was
nothing with 8 in the adaptive version and 10 in the static. However,
the biggest difference between the answers was that players in the
adaptive versions mentioned the lack of instructions and the lack
of helpful hints 9 times compared to only 2 in the static version.
This may explain why the players in the static version perceived
the game as more helpful. The instructions however mean different
things, some players wanted more directions for the tasks “Not
enough instructions. I wasted a lot of time in one room because
there were no commands or hints I could use to get to the next room”
and “It is not very self explanatory. The stair problem i had no idea
right away they were different heights. It was a massive amount
of trial and error”. Other players wanted directions on where to go
next “I sometimes wasn’t sure of where I needed to go to progress
in the game”, and other players wanted more hints if they are stuck
“The game was fun, but I wish there was more hints available for
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Table 8: median, and Mann Whitney U test for post-game survey questions. A represents the adaptive version and NA is the
static non-adaptive version. The first question is a 7-pt likert scale and the rest are 5-pt likert.

Question median A median NA U p
Did you like the game? 6 7 360.5 0.140
Would like to play more of the game? 4 5 356.5 0.125
How difficult was the game for you? 4 4 352.5 0.110
Do you feel that the game provides enough help? 4 5 326.5 0.048
Do you think this game can be an effective way to learn programming? 4 5 256.5 0.002

Table 9: median, and Mann Whitney U test for post-game survey questions with filtered players. A represents the adaptive
version and NA is the static non-adaptive version. The first question is a 7-pt likert scale and the rest are 5-pt likert.

Question median A median NA U p
Did you like the game? 6 6 115.5 0.191
Would like to play more of the game? 4 5 94 0.042
How difficult was the game for you? 3 4 113 0.160
Do you feel that the game provides enough help? 3 5 96 0.049
Do you think this game can be an effective way to learn programming? 4 5 57 < 0.001

Table 10: The number of time each category was mentioned
in players’ open-ended response to the question “What did
you like the most about the game?”

Category Overall Adaptive Non-adaptive
Learning 28 16 12
Aesthetics 12 3 9
Achievement 8 5 3
Gameplay 7 1 6
Misc 3 1 2

when you’re stuck”. One player also mentioned the hints that are
given in between scene transitions “Some of the text that was giving
you hints or instructions disappeared too quickly and it was hard
to read it all”. These hints include instructions such as “Use ctrl-c
and ctrl-v to copy/paste your code” or “press the button help to get
a hint” etc. These kinds of instructions are popular in video game
loading screens. However, if the scene loads too fast, there is not
enough time to read them.

Besides the lack of instructions, 2 players mentioned the adaptive
levels specifically as the thing they disliked themost about the game,
the answers are “Being moved to another area” and “It was not
always clear what the goal was. Especially when taken from the
main castle to a room with the white figure I could put in the code
to move the block but it was not always clear where I was trying
to move it to”. The latter response showcases the main difference
between a procedurally generated level and a static one. In a hand-
crafted level, the lighting and setting of the level make it easier for
the player to identify their goal, while that’s not always the case in
a procedurally generated one. Further, hand-designed levels include
specific hints on how to solve that puzzles which are difficult to
generate automatically.

Finally, the last open-ended question was only available if the
players answered yes to this question “Did you experience instances

where the game seemed to glitch and May got transported to an-
other level in the game?”. Out of 61 players, only 21 have answered
yes to this question. Interestingly, only 5 of those players have
actually encountered an adaptive level. The other players were split
equally between the static version and the adaptive version but
without experiencing it. Of the 5 who answered 2 disliked them
“It was slightly annoying” and “They were annoying and felt like
a punishment for not doing the code right” while the other two
liked them “I only got to experience one, but it was interesting and
informative” and “i think its good to play”. The last person simply
answered “good”. It is unclear why so many players answered this
question incorrectly, it could be because the wording was ambigu-
ous, or they were not paying attention, or that these levels seemed
natural to them and didn’t seem like something out of the ordinary
in the game. In fact, 21 players who encountered a practice level
have answered “no” to the question.

8 DISCUSSION
From the combination of our results, it seems that players in the
adaptive version performed better in terms of the number of error
messages per level, and levels reached and attempted (including
practice levels), however, they seemed to think that the game is not
as helpful and lacks instruction. An interesting finding was that
if we account for practice levels, players in the adaptive version
perform significantly better than players in the non-adaptive, and
this is likely due to the practice levels being easier to solve, which
is in contrast with the fact that players found the adaptive version
less helpful. There were no other notable differences between the
two game versions that were statistically significant.

One of the main reasons for the unsupported hypotheses is that
players were playing for only 30 minutes and it therefore may be
difficult to observe many differences. Further, since our participants
are Amazon Mechanical Turkers, many of them are multi-tasking,
which would make the game even more difficult for them given
that they are not completely focused. Further, many were not fully
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engaged with the game or the surveys. Some of the answers to the
survey questions are contradictory such as a player answering that
they definitely disliked the game but would definitely want to play
more. Also, many have answered the open-ended questions with
one word only “good” for all the questions. There is also doubt
about their reported level of expertise in programming which is
not supported by their in-game behavior and their skills as logged
in the data. In fact, these types of participants are more accustomed
to short tasks that can be performed in a fast, repetitive way.

Additionally, while our focus is on debugging, it is not necessarily
what the player was struggling with. In that case, the targeted
practice levels for debugging might be more annoying than helpful.
However, some players did like those levels which may mean that
depending on the type of player or depending on the context, these
levels may or may not be enjoyable. We did not have enough data
to draw any conclusions about what such a context or player could
be like. This is especially important because the adaptive levels
seem to increase performance but if some players perceive them as
annoying or frustrating, they might not continue playing, especially
in a voluntary context. In terms of timing or framing of these
adaptive levels, it is unclear what would be the best approach to
strike the balance between helpful and enjoyable. It seems that
the answer to that will also depend on the individual player, their
performance, and their preferences. Finally, debugging practice
levels alone may not be sufficient and different types of adaptivity
in terms of hints, scaffolding techniques, instructions, and practice
levels with specific learning constructs are needed.

9 CONCLUSION
There are many variables and small details that play a role in the
adaptive version of the game beyond practicing debugging. In fact,
the timing and the way the levels are introduced can affect how
players perceive it. Some of our hypotheses were not supported
by our experiments, namely that players would enjoy the adaptive
version more, and that they will perform better after receiving a
practice level. It is unclear if this result is the product of how and
when the levels were introduced, the design of the levels themselves,
or player preferences. More work needs to be done in relation to
adaptive procedural levels in learning environments to shed light
on these issues. In this paper, we shed some light on the difficulties
of integrating adaptive levels in an existing game. In the future, we
plan to vary how and when levels are presented and gather more
data to be able to match a player model to a specific approach.
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